BOUTIQUE精品展示
腫瘤的發(fā)生發(fā)展是一個復(fù)雜的過程,涉及一系列遺傳和表觀遺傳的改變。這些改變使得細(xì)胞能夠擺脫正常生長調(diào)控信號(如外部環(huán)境和內(nèi)部信號)的束縛,獲得自主增殖的能力。其中,錨定非依賴性生長(Anchorage-independent growth)是細(xì)胞惡性轉(zhuǎn)化的重要標(biāo)志之一,而軟瓊脂集落形成實驗(Soft Agar Colony Formation Assay)被認(rèn)為是檢測細(xì)胞惡性轉(zhuǎn)化的金標(biāo)準(zhǔn)。
軟瓊脂集落形成實驗通過在半固體培養(yǎng)基中培養(yǎng)細(xì)胞,觀察其是否能夠在無錨定條件下形成集落,從而判斷細(xì)胞的惡性轉(zhuǎn)化能力。然而,這種方法通常需要3-4周才能獲得結(jié)果,嚴(yán)重拖慢研究進(jìn)度,并且由于依賴人工顯微鏡計數(shù)集落,難以統(tǒng)一判定導(dǎo)致結(jié)果偏差。最重要的是傳統(tǒng)軟瓊脂實驗無法回收活細(xì)胞,限制了后續(xù)研究的開展。
Cellbiolabs新一代CytoSelectTM檢測系統(tǒng)結(jié)合熒光定量技術(shù)和改良軟瓊脂配方,全面優(yōu)化了實驗流程:
?
?
CytoSelectTM細(xì)胞轉(zhuǎn)化檢測試劑盒通過高靈敏度的熒光檢測法定量細(xì)胞集落,實驗周期從3-4周縮短至1周內(nèi),顯著提高了研究效率,同時避免了人工計數(shù)的主觀誤差,尤其適合高通量樣本檢測。對于蛋白質(zhì)/DNA芯片分析或癌癥疫苗開發(fā)等應(yīng)用領(lǐng)域而言,使用專用改良軟瓊脂培養(yǎng)基可以輕松回收活化的轉(zhuǎn)化細(xì)胞供進(jìn)一步培養(yǎng)和測試使用。
Fig 1?細(xì)胞活力檢測:按照實驗方案回收HeLa和293細(xì)胞培養(yǎng)6天,用臺盼藍(lán)法測定細(xì)胞活力。
?
產(chǎn)品訂購信息:
貨號 |
品名 |
檢測方法 |
CBA-135 |
CytoSelect? 96-Well Cell Transformation Assay, Cell Recovery Compatible |
比色法 |
CBA-140 |
CytoSelect? 96-Well Cell Transformation Assay, Cell Recovery Compatible |
熒光法 |
CytoSelect? 96-Well Cell Transformation Assay, Soft Agar Colony Formation |
熒光法 |
?
產(chǎn)品部分已發(fā)表文獻(xiàn):
1. El Baba, R. et al. (2023). Polyploidy, EZH2 upregulation, and transformation in cytomegalovirusinfected human ovarian epithelial cells. Oncogene. doi: 10.1038/s41388-023-02813-4.
2. Hiroki, H. et al. (2023). Targeting Poly(ADP)ribose polymerase in BCR/ABL1-positive cells. SciRep. 13(1):7588. doi: 10.1038/s41598-023-33852-2.
3. El Baba, R. et al. (2023). EZH2-Myc driven glioblastoma elicited by cytomegalovirus infection ofhuman astrocytes. Oncogene. doi: 10.1038/s41388-023-02709-3.
4. Kantisin, S. et al. (2022). In utero arsenic exposure increases DNA damage and gene expressionchanges in umbilical cord mesenchymal stem cells (UC-MSCs) from newborns as well as in UCMSC differentiated hepatocytes. Toxicol Rep. doi: 10.1016/j.toxrep.2022.09.002.
5. Nehme, Z. et al. (2022). Polyploid giant cancer cells, EZH2 and Myc upregulation in mammaryepithelial cells infected with high-risk human cytomegalovirus. EBioMedicine. 80:104056. doi:10.1016/j.ebiom.2022.104056.
6. Kim, D.G. et al. (2022). AIMP2-DX2 provides therapeutic interface to control KRAS-driventumorigenesis. Nat Commun. 13(1):2572. doi: 10.1038/s41467-022-30149-2.
7. Buranarom, A. et al. (2021). Dichloromethane increases mutagenic DNA damage andtransformation ability in cholangiocytes and enhances metastatic potential in cholangiocarcinomacell lines. Chem Biol Interact. doi: 10.1016/j.cbi.2021.109580.
8. Nehme, Z. et al. (2021). Polyploid giant cancer cells, stemness and epithelial-mesenchymalplasticity elicited by human cytomegalovirus. Oncogene. doi: 10.1038/s41388-021-01715-7.
9. Andrade, F. et al. (2021). Polymeric micelles targeted against CD44v6 receptor increaseniclosamide efficacy against colorectal cancer stem cells and reduce circulating tumor cells in vivo.J Control Release. 331:198-212. doi: 10.1016/j.jconrel.2021.01.022.
10. Wakae, K. et al. (2020). EBV-LMP1 induces APOBEC3s and mitochondrial DNA hypermutationin nasopharyngeal cancer. Cancer Med. doi: 10.1002/cam4.3357.
11. Lv, W. et al. (2020). Reprogramming of Ovarian Granulosa Cells by YAP1 Leads to Developmentof High-Grade Cancer with Mesenchymal Lineage and Serous Features. Sci Bull. doi:10.1016/j.scib.2020.03.040.
12. Murata, M. et al. (2020). OVOL2-Mediated ZEB1 Downregulation May Prevent Promotion ofActinic Keratosis to Cutaneous Squamous Cell Carcinoma. J Clin Med. 9(3). pii: E618. doi:10.3390/jcm9030618.
13. Hernandez, D.M. et al. (2020). IPF pathogenesis is dependent upon TGFβ induction of IGF-1.FASEB J. doi: 10.1096/fj.201901719RR.
14. Sand, A. et al. (2019). WEE1 inhibitor, AZD1775, overcomes trastuzumab resistance by targetingcancer stem-like properties in HER2-positive breast cancer. Cancer Lett. 472:119-131. doi:10.1016/j.canlet.2019.12.023.
15. Paul, M. et al. (2022). Nitric-Oxide Synthase trafficking inducer (NOSTRIN) is an emerging negative regulator of colon cancer progression. BMC Cancer. 22(1):594. doi: 10.1186/s12885-022-09670-6.
16. Kondo, M. et al. (2021). Safety and efficacy of human juvenile chondrocyte-derived cell sheets forosteochondral defect treatment. NPJ Regen Med. 6(1):65. doi: 10.1038/s41536-021-00173-9.
17. van der Toorn, M. et al. (2018). The biological effects of long-term exposure of human bronchialepithelial cells to total particulate matter from a candidate modified-risk tobacco product. Toxicol In Vitro. 50:95-108. doi: 10.1016/j.tiv.2018.02.019.
18. Montalbano, M. et al. (2016). Modeling of hepatocytes proliferation isolated from proximal and distal zones from human hepatocellular carcinoma lesion. PLoS One. 11:e0153613.
19. Choi, B.Y. et al. (2023). Engineered Mesenchymal Stem Cells Over-Expressing BDNF Protect theBrain from Traumatic Brain Injury-Induced Neuronal Death, Neurological Deficits, and CognitiveImpairments. Pharmaceuticals (Basel). 16(3):436. doi: 10.3390/ph16030436.
20. Ikeda, J. et al. (2023). Hypoxia inducible factor‐1 activator munc‐18‐interacting protein 3 promotestumour progression in urothelial carcinoma. Clin Transl Disc. 3:e158. doi: 10.1002/ctd2.158.
21. Switzer, C.H. et al. (2022). NOS2 and S-nitrosothiol signaling induces DNA hypomethylation andLINE-1 retrotransposon expression. Proc Natl Acad Sci U S A. 119(21):e2200022119. doi:10.1073/pnas.2200022119.
22. Furuya, K. et al. (2022). Machine learning extracts oncogenic-specific γ-H2AX foci formationpattern upon genotoxic stress. Genes Cells. doi: 10.1111/gtc.13005.
23. Kim, M. et al. (2022). BRAFV600E Mutation Enhances Estrogen-Induced Metastatic Potential ofThyroid Cancer by Regulating the Expression of Estrogen Receptors. Endocrinol Metab (Seoul).37(6):879-890. doi: 10.3803/EnM.2022.1563.
24. Toh, P.J.Y. et al. (2022). Optogenetic control of YAP cellular localisation and function. EMBORep. doi: 10.15252/embr.202154401.
25. Lee, A.R. et al. (2022). Biomarker LEPRE1 induces pelitinib-specific drug responsiveness byregulating ABCG2 expression and tumor transition states in human leukemia and lung cancer. SciRep. 12(1):2928. doi: 10.1038/s41598-022-06621-w.
26. Wang, Y. et al. (2022). Long non-coding RNA OIP5-AS1 suppresses microRNA-92a to augmentproliferation and metastasis of ovarian cancer cells through upregulating ITGA6. J Ovarian Res.15(1):25. doi: 10.1186/s13048-021-00937-3.
27. Andriolo, G. et al. (2021). GMP-Grade Methods for Cardiac Progenitor Cells: Cell BankProduction and Quality Control. Methods Mol Biol. doi: 10.1007/7651_2020_286.
28. Tan, T.T. et al. (2021). Assessment of Tumorigenic Potential in Mesenchymal-Stem/Stromal-CellDerived Small Extracellular Vesicles (MSC-sEV). Pharmaceuticals. 14(4):345. doi:10.3390/ph14040345.
29. Lo, E.K.K. et al. (2021). Low dose of zearalenone elevated colon cancer cell growth through Gprotein-coupled estrogenic receptor. Sci Rep. 11(1):7403. doi: 10.1038/s41598-021-86788-w.
30. Park, S. et al. (2021). Cerebral Cavernous Malformation 1 Determines YAP/TAZ SignalingDependent Metastatic Hallmarks of Prostate Cancer Cells. Cancers (Basel). 13(5):1125. doi:10.3390/cancers13051125.
?
參考文獻(xiàn)
1. El Baba, R. et al. (2023). Polyploidy, EZH2 upregulation, and transformation in cytomegalovirus infected human ovarian epithelial cells. Oncogene. doi: 10.1038/s41388-023-02813-4.
2. Hiroki, H. et al. (2023). Targeting Poly(ADP)ribose polymerase in BCR/ABL1-positive cells. Sci Rep. 13(1):7588. doi: 10.1038/s41598-023-33852-2.
3. El Baba, R. et al. (2023). EZH2-Myc driven glioblastoma elicited by cytomegalovirus infection of human astrocytes. Oncogene. doi: 10.1038/s41388-023-02709-3.
4. Kantisin, S. et al. (2022). In utero arsenic exposure increases DNA damage and gene expression changes in umbilical cord mesenchymal stem cells (UC-MSCs) from newborns as well as in UC-MSC differentiated hepatocytes. Toxicol Rep. doi: 10.1016/j.toxrep.2022.09.002.
5. Nehme, Z. et al. (2022). Polyploid giant cancer cells, EZH2 and Myc upregulation in mammary epithelial cells infected with high-risk human cytomegalovirus. EBioMedicine. 80:104056. doi: 10.1016/j.ebiom.2022.104056.
?
Cell Biolabs公司坐落于美國加利福尼亞州圣地亞哥市,一直致力于開發(fā)生命科學(xué)研究領(lǐng)域的技術(shù)和工具,并將所開發(fā)的創(chuàng)新性技術(shù)成果商業(yè)化。Cell Biolabs孜孜不倦的完善產(chǎn)品,以期使細(xì)胞功能和疾病機(jī)制研究達(dá)到新高度。Cell Biolabs公司的產(chǎn)品獨具特色并且處于行業(yè)前沿水平,全球眾多大學(xué)、政府研究機(jī)構(gòu)、生物、制藥企業(yè)的科研實驗室均在使用。
?
北京西美杰是Cell Biolabs品牌中國授權(quán)代理,為用戶提供完善的技術(shù)支持與售后服務(wù)。如對產(chǎn)品感興趣歡迎撥打西美杰客服熱線400-050-4006或登錄網(wǎng)站rmb365.cn了解更多信息。
?